Crystal graphs for general linear Lie superalgebras and quasi-symmetric functions
نویسنده
چکیده
We give a new representation theoretic interpretation of the ring of quasisymmetric functions. This is obtained by showing that the super analogue of the Gessel’s fundamental quasi-symmetric function can be realized as the character of an irreducible crystal for the Lie superalgebra gln|n associated to its non-standard Borel subalgebra with a maximal number of odd isotropic simple roots. We also present an algebraic characterization of these super quasi-symmetric functions.
منابع مشابه
Crystal graphs for Lie superalgebras and Cauchy decomposition
We discuss Cauchy type decompositions of crystal graphs for general linear Lie superalgebras. More precisely, we consider bicrystal graph structures on various sets of matrices of non-negative integers, and obtain their decompositions with explicit combinatorial isomorphisms.
متن کاملKostant Homology Formulas for Oscillator Modules of Lie Superalgebras
We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...
متن کاملHowe Duality for Lie Superalgebras
We study a dual pair of general linear Lie superalgebras in the sense of R. Howe. We give an explicit multiplicity-free decomposition of a symmetric and skew-symmetric algebra (in the super sense) under the action of the dual pair and present explicit formulas for the highest weight vectors in each isotypic subspace of the symmetric algebra. We give an explicit multiplicity-free decomposition i...
متن کاملLocally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملHECKE - CLIFFORD SUPERALGEBRAS , CRYSTALS OF TYPE A ( 2 ) 2 l AND MODULAR BRANCHING RULES FOR Ŝ
This paper is concerned with the modular representation theory of the affine Hecke-Clifford superalgebra, the cyclotomic Hecke-Clifford superalgebras, and projective representations of the symmetric group. Our approach exploits crystal graphs of affine Kac-Moody algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 116 شماره
صفحات -
تاریخ انتشار 2009